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Cardiovascular health is crucial in preventing heart disease, the leading cause of death worldwide. 
This article reviews the adaptations of cardiovascular systems in aquatic and terrestrial vertebrates, 
emphasizing their evolutionary signi�cance and implications for human health. Aquatic vertebrates, 
such as �sh, possess simpler cardiovascular structures, primarily a two-chambered heart, which 
e�ectively manages oxygen extraction in water. In contrast, terrestrial vertebrates, including 
amphibians, reptiles, birds, and mammals, have evolved more complex cardiovascular systems, with 
three or four-chambered hearts that support higher metabolic demands. Understanding these 
adaptations provides insights into potential therapeutic strategies for cardiovascular diseases in 
humans, particularly through comparative physiology and regenerative medicine.
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Cardiovascular health is a crucial area of medical research, 
particularly as cardiovascular diseases (CVDs) remain the 
leading cause of mortality globally [1]. Understanding the 
evolutionary adaptations of cardiovascular systems in various 
vertebrate species can provide valuable insights for improving 
human health outcomes. �e intricate designs of these systems 
have evolved in response to environmental demands, shaping 
how di�erent organisms manage oxygen delivery and metabolic 
processes [2].

 Aquatic vertebrates, such as �sh, have developed highly 
e�cient two-chambered hearts that optimize oxygen extraction 
from water, a medium where oxygen availability is o�en limited 
[3]. �ese adaptations allow for e�ective blood circulation while 
minimizing energy expenditure, enabling �sh to thrive in 
diverse aquatic environments. Conversely, terrestrial 
vertebrates, including amphibians, reptiles, birds, and 
mammals, have evolved more complex three or four-chambered 
hearts that support higher metabolic rates essential for 
sustaining life on land [4]. �is complexity enables the 
separation of oxygenated and deoxygenated blood, facilitating 
more e�cient oxygen delivery to tissues during increased 
physical activity [5].

 �is article will explore the evolution of cardiovascular 
systems in both aquatic and terrestrial vertebrates, examining 
the structural and functional adaptations that have arisen in 
response to environmental challenges. It will further discuss the 
implications of these adaptations for human cardiovascular 
health, highlighting how insights gained from studying these 
diverse species can contribute to the development of innovative 
treatments and preventive strategies against heart diseases.

Evolution of Cardiovascular Systems
Aquatic vertebrates
Aquatic vertebrates, such as �sh, have evolved a two-chambered 
heart consisting of one atrium and one ventricle [6]. �is design 

is e�cient for their environment, allowing for e�ective 
oxygenation of blood as it passes through gills. �e blood is 
pumped from the heart to the gills, where it is oxygenated 
before being distributed to the rest of the body. �is 
single-circuit system is suitable for aquatic living, where 
oxygen availability can vary, and allows �sh to e�ciently 
manage blood �ow in response to their immediate 
environment [7].

Adaptations in �sh hearts

Fish hearts are adapted to low oxygen levels, utilizing a high 
stroke volume and low heart rate to maximize oxygen 
extraction during gill respiration. Some species have 
developed structures like the spiral valve in the conus 
arteriosus, which helps maintain e�cient blood �ow and 
oxygen uptake. Additionally, certain teleosts exhibit the ability 
to adapt to varying oxygen levels through physiological 
changes, enhancing their cardiovascular performance [8]. 

Terrestrial vertebrates
In contrast, terrestrial vertebrates, including amphibians, 
reptiles, birds, and mammals, possess more complex three or 
four-chambered hearts that support a double-circuit system 
[6]. �is adaptation is crucial for managing higher metabolic 
rates and the increased oxygen demands associated with life 
on land.

Evolution of the Heart Structure

Amphibians have a three-chambered heart (two atria and one 
ventricle), allowing for some separation of oxygenated and 
deoxygenated blood [6]. However, this system can lead to the 
mixing of blood, which is less e�cient for oxygen delivery.

 Reptiles also typically have three-chambered hearts, but 
some, like crocodiles, possess a four-chambered heart, 
e�ectively preventing the mixing of blood [3].

 Birds and mammals, both of which have evolved 
four-chambered hearts, exhibit complete separation of 
oxygenated and deoxygenated blood, supporting higher 

metabolic rates and endurance activities (Table 1). �is 
structural evolution re�ects their adaptation to diverse 
ecological niches and energetic lifestyles [9,10].

Conclusions
�e study of cardiovascular adaptations in aquatic and 
terrestrial vertebrates provides valuable insights into the 
evolution of heart function and its implications for human 
health. By understanding how these adaptations have allowed 
di�erent species to thrive in diverse environments, we can 
develop novel strategies for preventing and treating 
cardiovascular diseases. As research in this area continues to 
evolve, the potential for cross-disciplinary applications in 
medicine and biology will only grow, paving the way for 
enhanced cardiovascular health in humans.
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Comparative Cardiovascular Function
Cardiac output and efficiency
Cardiac output, the volume of blood the heart pumps per 
minute, is a critical measure of cardiovascular e�ciency [11]. In 
�sh, lower heart rates and higher stroke volumes are observed, 
which are e�ective in their aquatic environments. In terrestrial 
vertebrates, especially mammals, the heart adapts to higher 
workloads with increased heart rates and specialized chambers 
that optimize oxygen delivery to tissues [10].

Oxygen utilization
Aquatic vertebrates have adaptations for e�cient oxygen 
extraction in water, where oxygen levels are typically lower than 
in air [12]. For instance, many �sh species can alter their gill 
surface area or blood �ow to maximize oxygen uptake 
depending on environmental conditions. In contrast, terrestrial 
vertebrates utilize lungs for gas exchange, requiring a more 
robust and e�cient heart to maintain the necessary oxygen 
levels for metabolic processes [13].

Response to environmental stressors
�e cardiovascular systems of vertebrates also respond to 
environmental stressors di�erently. For example, during 
hypoxic conditions, �sh may reduce their activity levels or alter 
their swimming patterns to conserve energy and maintain 
oxygen levels [14]. Terrestrial vertebrates, however, have 
developed more complex regulatory mechanisms, including the 
ability to increase heart rate and redistribute blood �ow to vital 
organs during stress, ensuring that oxygen delivery remains 
optimal [15].

Cardiovascular Pathologies and Implications for 
Human Health
Understanding the cardiovascular adaptations of di�erent 
vertebrates o�ers insights into potential treatments for human 
heart diseases [16]. Research into the cardiovascular systems of 
these animals may uncover novel therapeutic strategies and 
preventive measures against conditions like ischemic heart 
disease (IHD) and heart failure [17].

Cardiovascular diseases in humans
Cardiovascular diseases (CVDs) are characterized by disorders 
of the heart and blood vessels, including conditions such as 
coronary artery disease, hypertension, and heart failure [18]. 
�ese diseases o�en result from a combination of genetic, 
environmental, and lifestyle factors. Studying adaptations in 
other vertebrates can provide clues about potential protective 
mechanisms against these diseases.

Insights from aquatic adaptations
�e heart's e�ciency in �sh, particularly in oxygen extraction 
and metabolic regulation, could inspire new approaches to 
enhancing heart function in humans. For instance, 
understanding how certain �sh manage blood �ow under 
hypoxic conditions may lead to new treatments for heart 
conditions characterized by reduced blood �ow [19]. 
Additionally, research into the regenerative capabilities of some 
�sh species, such as zebra�sh, which can regenerate heart tissue 
a�er injury, may inform regenerative medicine approaches for 
treating damaged human hearts.

Learning from terrestrial adaptations
Mammals and birds exhibit cardiovascular features that enable 
them to sustain high levels of physical activity and endurance. 
Insights into how these species regulate heart rate and blood 
pressure during exercise could lead to better management 
strategies for human cardiovascular health, particularly in 
populations at risk for heart disease [20]. Furthermore, 
understanding the mechanisms underlying the complete 
separation of blood �ow in four-chambered hearts may 
highlight targets for therapeutic interventions in patients with 
congenital heart defects [21].

Future Directions in Research
Cross-species comparative studies
Future research should focus on cross-species studies that 
explore the physiological di�erences and similarities in 
cardiovascular function across vertebrates [22]. Such studies 
could reveal novel mechanisms that underlie cardiovascular 
adaptations and may contribute to developing innovative 
therapeutic strategies for heart diseases.

Genetic and molecular studies
Investigating the genetic and molecular bases of cardiovascular 
adaptations in di�erent vertebrates will be crucial. Identifying 
genes and signaling pathways involved in heart development, 
function, and response to stressors could o�er potential targets 
for drug development and regenerative therapies [23].

Clinical applications of comparative physiology
Integrating �ndings from comparative physiology into clinical 
practice could lead to more e�ective prevention and treatment 
strategies for cardiovascular diseases [24]. For example, 
therapies that mimic the protective e�ects observed in �sh 
during hypoxia or harnessing the regenerative capabilities of 
certain species may provide new avenues for heart disease 
management.
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ecological niches and energetic lifestyles [9,10].
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Feature Aquatic Vertebrates Terrestrial Vertebrates
Heart Structure Two-chambered heart �ree or four-chambered heart
Blood Flow Circuit Single circuit (heart → gills → body) Double circuit (heart → lungs → body)
Oxygen Extraction High e�ciency in gills E�cient lung-based respiration
Response to Hypoxia Reduced activity, altered �ow Increased heart rate, blood redistribution
Adaptation Mechanisms Gill surface area adjustment Enhanced chamber structure for increased output

Table 1. Comparative Cardiovascular Features of Aquatic and Terrestrial Vertebrates.

Comparative Cardiovascular Function
Cardiac output and efficiency
Cardiac output, the volume of blood the heart pumps per 
minute, is a critical measure of cardiovascular e�ciency [11]. In 
�sh, lower heart rates and higher stroke volumes are observed, 
which are e�ective in their aquatic environments. In terrestrial 
vertebrates, especially mammals, the heart adapts to higher 
workloads with increased heart rates and specialized chambers 
that optimize oxygen delivery to tissues [10].

Oxygen utilization
Aquatic vertebrates have adaptations for e�cient oxygen 
extraction in water, where oxygen levels are typically lower than 
in air [12]. For instance, many �sh species can alter their gill 
surface area or blood �ow to maximize oxygen uptake 
depending on environmental conditions. In contrast, terrestrial 
vertebrates utilize lungs for gas exchange, requiring a more 
robust and e�cient heart to maintain the necessary oxygen 
levels for metabolic processes [13].

Response to environmental stressors
�e cardiovascular systems of vertebrates also respond to 
environmental stressors di�erently. For example, during 
hypoxic conditions, �sh may reduce their activity levels or alter 
their swimming patterns to conserve energy and maintain 
oxygen levels [14]. Terrestrial vertebrates, however, have 
developed more complex regulatory mechanisms, including the 
ability to increase heart rate and redistribute blood �ow to vital 
organs during stress, ensuring that oxygen delivery remains 
optimal [15].

Cardiovascular Pathologies and Implications for 
Human Health
Understanding the cardiovascular adaptations of di�erent 
vertebrates o�ers insights into potential treatments for human 
heart diseases [16]. Research into the cardiovascular systems of 
these animals may uncover novel therapeutic strategies and 
preventive measures against conditions like ischemic heart 
disease (IHD) and heart failure [17].

Cardiovascular diseases in humans
Cardiovascular diseases (CVDs) are characterized by disorders 
of the heart and blood vessels, including conditions such as 
coronary artery disease, hypertension, and heart failure [18]. 
�ese diseases o�en result from a combination of genetic, 
environmental, and lifestyle factors. Studying adaptations in 
other vertebrates can provide clues about potential protective 
mechanisms against these diseases.

Insights from aquatic adaptations
�e heart's e�ciency in �sh, particularly in oxygen extraction 
and metabolic regulation, could inspire new approaches to 
enhancing heart function in humans. For instance, 
understanding how certain �sh manage blood �ow under 
hypoxic conditions may lead to new treatments for heart 
conditions characterized by reduced blood �ow [19]. 
Additionally, research into the regenerative capabilities of some 
�sh species, such as zebra�sh, which can regenerate heart tissue 
a�er injury, may inform regenerative medicine approaches for 
treating damaged human hearts.

Learning from terrestrial adaptations
Mammals and birds exhibit cardiovascular features that enable 
them to sustain high levels of physical activity and endurance. 
Insights into how these species regulate heart rate and blood 
pressure during exercise could lead to better management 
strategies for human cardiovascular health, particularly in 
populations at risk for heart disease [20]. Furthermore, 
understanding the mechanisms underlying the complete 
separation of blood �ow in four-chambered hearts may 
highlight targets for therapeutic interventions in patients with 
congenital heart defects [21].

Future Directions in Research
Cross-species comparative studies
Future research should focus on cross-species studies that 
explore the physiological di�erences and similarities in 
cardiovascular function across vertebrates [22]. Such studies 
could reveal novel mechanisms that underlie cardiovascular 
adaptations and may contribute to developing innovative 
therapeutic strategies for heart diseases.

Genetic and molecular studies
Investigating the genetic and molecular bases of cardiovascular 
adaptations in di�erent vertebrates will be crucial. Identifying 
genes and signaling pathways involved in heart development, 
function, and response to stressors could o�er potential targets 
for drug development and regenerative therapies [23].

Clinical applications of comparative physiology
Integrating �ndings from comparative physiology into clinical 
practice could lead to more e�ective prevention and treatment 
strategies for cardiovascular diseases [24]. For example, 
therapies that mimic the protective e�ects observed in �sh 
during hypoxia or harnessing the regenerative capabilities of 
certain species may provide new avenues for heart disease 
management.
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Cardiovascular health is a crucial area of medical research, 
particularly as cardiovascular diseases (CVDs) remain the 
leading cause of mortality globally [1]. Understanding the 
evolutionary adaptations of cardiovascular systems in various 
vertebrate species can provide valuable insights for improving 
human health outcomes. �e intricate designs of these systems 
have evolved in response to environmental demands, shaping 
how di�erent organisms manage oxygen delivery and metabolic 
processes [2].

 Aquatic vertebrates, such as �sh, have developed highly 
e�cient two-chambered hearts that optimize oxygen extraction 
from water, a medium where oxygen availability is o�en limited 
[3]. �ese adaptations allow for e�ective blood circulation while 
minimizing energy expenditure, enabling �sh to thrive in 
diverse aquatic environments. Conversely, terrestrial 
vertebrates, including amphibians, reptiles, birds, and 
mammals, have evolved more complex three or four-chambered 
hearts that support higher metabolic rates essential for 
sustaining life on land [4]. �is complexity enables the 
separation of oxygenated and deoxygenated blood, facilitating 
more e�cient oxygen delivery to tissues during increased 
physical activity [5].

 �is article will explore the evolution of cardiovascular 
systems in both aquatic and terrestrial vertebrates, examining 
the structural and functional adaptations that have arisen in 
response to environmental challenges. It will further discuss the 
implications of these adaptations for human cardiovascular 
health, highlighting how insights gained from studying these 
diverse species can contribute to the development of innovative 
treatments and preventive strategies against heart diseases.

Evolution of Cardiovascular Systems
Aquatic vertebrates
Aquatic vertebrates, such as �sh, have evolved a two-chambered 
heart consisting of one atrium and one ventricle [6]. �is design 

is e�cient for their environment, allowing for e�ective 
oxygenation of blood as it passes through gills. �e blood is 
pumped from the heart to the gills, where it is oxygenated 
before being distributed to the rest of the body. �is 
single-circuit system is suitable for aquatic living, where 
oxygen availability can vary, and allows �sh to e�ciently 
manage blood �ow in response to their immediate 
environment [7].

Adaptations in �sh hearts

Fish hearts are adapted to low oxygen levels, utilizing a high 
stroke volume and low heart rate to maximize oxygen 
extraction during gill respiration. Some species have 
developed structures like the spiral valve in the conus 
arteriosus, which helps maintain e�cient blood �ow and 
oxygen uptake. Additionally, certain teleosts exhibit the ability 
to adapt to varying oxygen levels through physiological 
changes, enhancing their cardiovascular performance [8]. 

Terrestrial vertebrates
In contrast, terrestrial vertebrates, including amphibians, 
reptiles, birds, and mammals, possess more complex three or 
four-chambered hearts that support a double-circuit system 
[6]. �is adaptation is crucial for managing higher metabolic 
rates and the increased oxygen demands associated with life 
on land.

Evolution of the Heart Structure

Amphibians have a three-chambered heart (two atria and one 
ventricle), allowing for some separation of oxygenated and 
deoxygenated blood [6]. However, this system can lead to the 
mixing of blood, which is less e�cient for oxygen delivery.

 Reptiles also typically have three-chambered hearts, but 
some, like crocodiles, possess a four-chambered heart, 
e�ectively preventing the mixing of blood [3].

 Birds and mammals, both of which have evolved 
four-chambered hearts, exhibit complete separation of 
oxygenated and deoxygenated blood, supporting higher 

metabolic rates and endurance activities (Table 1). �is 
structural evolution re�ects their adaptation to diverse 
ecological niches and energetic lifestyles [9,10].

Conclusions
�e study of cardiovascular adaptations in aquatic and 
terrestrial vertebrates provides valuable insights into the 
evolution of heart function and its implications for human 
health. By understanding how these adaptations have allowed 
di�erent species to thrive in diverse environments, we can 
develop novel strategies for preventing and treating 
cardiovascular diseases. As research in this area continues to 
evolve, the potential for cross-disciplinary applications in 
medicine and biology will only grow, paving the way for 
enhanced cardiovascular health in humans.
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Comparative Cardiovascular Function
Cardiac output and efficiency
Cardiac output, the volume of blood the heart pumps per 
minute, is a critical measure of cardiovascular e�ciency [11]. In 
�sh, lower heart rates and higher stroke volumes are observed, 
which are e�ective in their aquatic environments. In terrestrial 
vertebrates, especially mammals, the heart adapts to higher 
workloads with increased heart rates and specialized chambers 
that optimize oxygen delivery to tissues [10].

Oxygen utilization
Aquatic vertebrates have adaptations for e�cient oxygen 
extraction in water, where oxygen levels are typically lower than 
in air [12]. For instance, many �sh species can alter their gill 
surface area or blood �ow to maximize oxygen uptake 
depending on environmental conditions. In contrast, terrestrial 
vertebrates utilize lungs for gas exchange, requiring a more 
robust and e�cient heart to maintain the necessary oxygen 
levels for metabolic processes [13].

Response to environmental stressors
�e cardiovascular systems of vertebrates also respond to 
environmental stressors di�erently. For example, during 
hypoxic conditions, �sh may reduce their activity levels or alter 
their swimming patterns to conserve energy and maintain 
oxygen levels [14]. Terrestrial vertebrates, however, have 
developed more complex regulatory mechanisms, including the 
ability to increase heart rate and redistribute blood �ow to vital 
organs during stress, ensuring that oxygen delivery remains 
optimal [15].

Cardiovascular Pathologies and Implications for 
Human Health
Understanding the cardiovascular adaptations of di�erent 
vertebrates o�ers insights into potential treatments for human 
heart diseases [16]. Research into the cardiovascular systems of 
these animals may uncover novel therapeutic strategies and 
preventive measures against conditions like ischemic heart 
disease (IHD) and heart failure [17].

Cardiovascular diseases in humans
Cardiovascular diseases (CVDs) are characterized by disorders 
of the heart and blood vessels, including conditions such as 
coronary artery disease, hypertension, and heart failure [18]. 
�ese diseases o�en result from a combination of genetic, 
environmental, and lifestyle factors. Studying adaptations in 
other vertebrates can provide clues about potential protective 
mechanisms against these diseases.

Insights from aquatic adaptations
�e heart's e�ciency in �sh, particularly in oxygen extraction 
and metabolic regulation, could inspire new approaches to 
enhancing heart function in humans. For instance, 
understanding how certain �sh manage blood �ow under 
hypoxic conditions may lead to new treatments for heart 
conditions characterized by reduced blood �ow [19]. 
Additionally, research into the regenerative capabilities of some 
�sh species, such as zebra�sh, which can regenerate heart tissue 
a�er injury, may inform regenerative medicine approaches for 
treating damaged human hearts.

Learning from terrestrial adaptations
Mammals and birds exhibit cardiovascular features that enable 
them to sustain high levels of physical activity and endurance. 
Insights into how these species regulate heart rate and blood 
pressure during exercise could lead to better management 
strategies for human cardiovascular health, particularly in 
populations at risk for heart disease [20]. Furthermore, 
understanding the mechanisms underlying the complete 
separation of blood �ow in four-chambered hearts may 
highlight targets for therapeutic interventions in patients with 
congenital heart defects [21].

Future Directions in Research
Cross-species comparative studies
Future research should focus on cross-species studies that 
explore the physiological di�erences and similarities in 
cardiovascular function across vertebrates [22]. Such studies 
could reveal novel mechanisms that underlie cardiovascular 
adaptations and may contribute to developing innovative 
therapeutic strategies for heart diseases.

Genetic and molecular studies
Investigating the genetic and molecular bases of cardiovascular 
adaptations in di�erent vertebrates will be crucial. Identifying 
genes and signaling pathways involved in heart development, 
function, and response to stressors could o�er potential targets 
for drug development and regenerative therapies [23].

Clinical applications of comparative physiology
Integrating �ndings from comparative physiology into clinical 
practice could lead to more e�ective prevention and treatment 
strategies for cardiovascular diseases [24]. For example, 
therapies that mimic the protective e�ects observed in �sh 
during hypoxia or harnessing the regenerative capabilities of 
certain species may provide new avenues for heart disease 
management.
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